Course Information Financial Engineering and • cameldai@mail.nctu.edu.tw Computations • 管一410 • 03-5712121#57054 • Suggested reading: - Financial Engineering & Computation: Principles, **Preliminaries** Mathematics, Algorithms. Cambridge University Press, 2002. Lyuu, Yuh-Dauh - C++財務程式設計,證基會2005戴天時 2 Dai, Tian-Shyr 1 Dai, Tian-Shyr Financial Engineering Financial Engineering **Course Information** What is Financial Engineering • 助教: Financial engineering is the process of • Mail: tailoring financial instruments and organizational structure to improve the • 分組報告:一組2~3個人,每組10~15分 profitability of intermediaries' customers. 鐘 • 報告內容: 財金新聞介紹, 財務專題報 財務工程的兩個要旨 告 1. 金融創新 • 作業繳交時間:出作業後一星期(請勿 2. 满足顧客需求 遲交) 3 Dai, Tian-Shvr Dai, Tian-Shyr 4

Financial Engineering

	價格波動性增加		
Why Financial Engineering	• Black Monday: Monday October 19, 1987.		
1.價格波動性增加	 Dow Jones Industrial Average fell 22.6%, the largest one-day decline in recorded stock market history 		
 2. 亚麻市场的主环化 3. 租稅的不對稱性 4. 科技的進步 5. 管制放鬆及競爭增加 	 價格大幅波動影響公司及個人的財務,甚 至導致破產 		
Dai, Tian-Shyr 5 Financial Engineering	Dai, Tian-Shyr 6 Financial Engineering		
價格波動性增加 An Example	價格波動性增加		
以Laker Airlines公司為例,1970年代因英	• 如何規避價格風險實屬必須		
鎊強勢,英國人到美國渡假的人很多,班	• 財務工程提供了規避價格風險的解答		
機因此經常客滿,Laker Airlines於是購5架	• A short example for risk management will		
DC-10客機。其收入為英鎊,購機支出則	be given later.		
為美金。1980年代,美金升值,Laker			
Airlines 因匯兌損失大筆資金。			
Dai, Tian-Shyr 7	Dai, Tian-Shyr 8		

Financial Engineering

金融市場的全球化 • 多國籍企業的影響力日增 • 市場改革開放 • 全球產業分工	 租稅的不對稱性 某些產業在租稅優惠(e.g. 高科技產業、 生化產業、孤兒藥製造商) 不同國家有不同租稅負擔(e.g. 福利國家 (如北歐國家)的稅率通常較高) 		
Dai, Tian-Shyr 9 Financial Engineering	Dai, Tian-Shyr 10 Financial Engineering		
租稅的不對稱性 An Example	租稅的不對稱性 An Example		
例:在美國利息收入是必須完全課稅 (taxable)的,但在股利收入則可抵免 80%。若A公司稅率40%,A公司的借 款利率10%,B公司特別股股利8%, 此時A公司應借錢(e.g. 10 millions)買B 公司特別股。	<u>分析</u> : 無tax asymmetry時⇔do not make sense(借 10%,得8%) tax asymmetry存在時⇔ 借款的effective rate=10%×(1-40%)=6% 特別股收益的effective rate=8% ×(1-20% ×40%)=7.36%		
Dai, Tian-Shyr 11	Dai, Tian-Shyr 12		

Financial Engineering

租稅的不對稱性 An Example <u>進一步分析</u> : 若B公司的稅率為12%,則A公司可以直接 向B公司借錢,B公司發行8%特別股賣給A 公司。	科技的進步 電腦、通訊、軟體技術影響最大 程序創新上常見(e.g. ATM, e-trading) Program trading
B公司的benefits = 利息收益一特別股利支 出 = 10%×(1-12%)-8% = 0.8% A公司的benefits = 7.36% - 6% = 1.36%	Dai, Tian-Shyr 14 Financial Engineering
管制放鬆及競爭增加 •產業開放、業務開放(e.g. 加入WTO) •提供客戶多樣化服務	A Short Story on Risk Management • Foreign exchange rate: • The exchange rate between the domestic currency and the foreign currency. • An example: 美爾花旗銀行 • Sell 1 USD 台幣對外幣匯率表 • 32.97190 TWDs 新知102 251092 256000 • Buy 1 USD 新知102 251092 256000 • 33.78860 TWDs 新生地路 CIFF 20002 2567200

Financial Engineering

The exchange rate between TWDs and

A Financial Derivatives (Foreign Exchange Call Option)

- Xs: the exchange rate at time s.
- Consider a call option as follows:
 - It starts at time t and matures at time T.
 - The strike price is K.
 - Allows the holder to buy the underlying asset with K.
- An example: (Assume K=Xt for convenience.)
 - An option buyer give P (option price) to the seller at t.
 (P is usually much smaller than Xt.)
 - At T, Seller should pay max(XT-Xt,0) to the buyer.

What the Changes of Exchange Rate Could Influence

- A Speculator:
 - view USD as a stock.
 - buy at low and sell at high.
 - Ex: Buy at time t with 32 (TWDs/USD), and sell at T with 33.
- Importer / Exporter:
 - A contract is usually quoted in USDs.
 - 1-million-USD contract signed at t and delivered at T.
 - An exporter gains as he earns 1 more million TWDs.
 - An importer suffers as he needs to pay one more million TWDs.

Dai, Tian-Shyr Financial Engineering 18

What does this Option Appeal to?

- A speculator:
 - He earns money by predicting the future.
 - Buy USD at t and sell at T.
 - Earns (33-32)/32=3%.
 - Buy an exchange rate call option
 - Earns (33-32)/P>>3% (As we know P <<32)
 - Maximum loss: P dollars.
 - (High leverage) A speculator would like to buy a call option for higher return.

What does this Option Appeal to?

- Importer may want to avoid the exchange rate risk.
 - Consider 1-million-USD contract mentioned before.
 - Exchange rate 32=> 33
 - One more million TWDs is required to buy the USDs.
 - If the importer buy one million units call options.

Dai, Tian-Shyr

Financial Engineering

- At maturity, he receives (33-32)* 1 million
- His loss is covered by the gain of the option.
- We call this *"hedge"*.

Review of the Above Mentioned Option

- Initiates at time t, and matures at time T.
- The strike price is K=Xt (32).
- At time t, the option buyer will pay *P* to get the option.
- At time T, the option seller needs to pay max(XT-Xt,0) to buyer.
- How can we determine the fair price of P.

Dai, Tian-Shyr Financial Engineering

22

How to Determine the Option Price (技術指標)

Dai, Tian-Shyr Financial Engineering

24

How to Determine the Option Price Economics

• The price is determined by the intersection of demand and the supply curves.

Dai, Tian-Shyr Financial Engineering 23

How to Determine the Option Price (Arbitrage-Base Pricing Theorem)

Assume that the exchange rate follows the ٠ following dynamics:

Arbitrage-Base Pricing Theorem

Replicate the Option and Determine the Option Price

- A foreign exchange option can be constructed as follows:
 - Borrow 15.5 TWDs,
 - Buy 0.5 USDs.
 - The total cost=-15.5+0.5*32=0.5 (TWDs)
- At case 1:
 - The value of portfolio--15.5+0.5*33-1 (TWDs)
- At case 2:
 - The Value of portfolio= -15.5+0.5*31=0 (TWDs)
- Can we say the value of the option is 0.5 (TWDs)?

Arbitrage-Base Pricing Theorem
Replicate the Option
• Replication: Construct a portfolio that has
the same payoff as the option at maturity.
• This call option can be replicated as follows:
• We buy x TWDs and y USDs at time t
• We hope that this portfolio generates the same
payoff as the option at time T.
• At case
$$1: x + 33y = 1$$

• At case $2: x + 31y = 0$
• Solve the equations, we have x=-15.5, y=0.5

Arbitrage-Base Pricing Theorem Introduction of Arbitrage

- Arbitrage: A trading that get extra returns without suffering risk.
 - Counter example:
 - Deposit: Earn normal return risklessly.
 - Gamble: Earn extra return by taking risk.
 - Example:
 - Cheat in gamble: In the case that you are sure to win.
- Arbitrage opportunity is assumed not to exist for long in the financial market.

25

Arbitrage-Based Pricing Theorem

Condition of Arbitrage Opportunity

- Arbitrage opportunity exists if the option value is *not* 0.5 TWDs.
- Let the option value P>0.5.
 - Sell a call option for P dollars.
 - Construct a replication portfolio
 - Borrow 15.5 TWDs and buy 0.5 USDs.
 - Benefit at time t = P 0.5 > 0.
 - No loss will be introduced at either case.

	TWDs	USDs	Option	Total
Case 1	-15.5	33/2	-1	0
Case 2	-15.5	31/2	0	0

Dai, Tian-Shyr Financial Engineering

29

Arbitrage-Based Pricing Theorem

Determine the Option Value by No Arbitrage Assumption

- Similar case is applied for the case option value P<0.5
 - Buy a call option for P dollars.
 - Construct a replication portfolio
 - Borrow 0.5 USDs and buy 15.5 TWDs
 - Benefit at time t = 0.5-P>0.
 - No loss will be introduced at either case.

		TWDs	USDs	Option	Total
(Case 1	15.5	-33/2	1	0
	Case 2	15.5	-31/2	0	0

Dai, Tian-Shyr Financial Engineering 30

Arbitrage-Based Pricing Theorem

Determine the Option Value by No Arbitrage Assumption

- Since the arbitrage opportunity exists if P>0.5 or P<0.5, the option value should be 0.5 in this case.
- Details for option pricing will be introduced later.

A Simple Overview of the Aforementioned Problem

What This Course Might Teach

- Financial background knowledge
 - Designed for beginner.
- Basic mathematical background
 - Knowledge involved in the pricing model.
- Learn to use existing packages. http://www.csie.ntu.edu.tw/~lyuu/Capitals/capitals.htm
- Computer science
 - Numerical pricing model and special skills,
- Team work
 - A team of members from different background.